Thursday, September 26, 2019

Strength of Materials 100 Questions with Answers




                                      Strength of Materials 100 Questions with Answers



       

        1.       If  a rigidity connected composite bar of steel and copper is heated  (copper steel) the copper bar will be subjected to


A. Compression      B. Tension
C. Torsion              D. None

Answer: Option A

       2.       Poisson’s ratio for an elastic incompressible material  is


          A. 0.5                             B. 0
C.0.29                             D. 9.3

Answer: Option A

3.    Limit of proportionality depends

A. Area of cross-section             B. Type of loading
C. Type of material                              D. All of above

Answer: Option C

4.     The relationship between young’s modulus of elasticity E, bulk modulus K and poisons ratio   is given by




A. E=2k(1-2µ)                   B. E=3k(1+µ)
C. E=3k(1-2µ)                         D. E=2k(1+µ)


Answer: Option C

    5. Limiting values of poission’s ratio are

A. +1 and 0.5                   B. -1 and 0.5
C. 1 and -0.5                   D. 0 and 0.5

Answer: Option D
 
6.Poisson’s ratio for cast iron is

A.0.27                           B. 0.31
C. 0.33                          D. 0.36

Answer: Option A

7. The units of true strain are

A.cm/cm                                  B. kg/cm
C.kg/cm/cm                    D. dimensionless

Answer: Option D

8. Lamis theorem states that

A. Three forces acting at a point are always in equilibrium
B. If three forces acting on a point can be represented in magnitude and direction by the side of a triangle, the point will be in equilibrium
C. Three coplanar forces acting at a point will in equilibrium if each force proportional to the sine of the angle between other.
D. Three forces acting at a point will be in equilibrium if each force is inversely proportional to the sine of the angle between other two.


Answer: Option C

    9. The property by which a body returns to its original shape after remove of the force is called

A. Plasticity                     B. elasticity
C. ductility                      D. malleability
Answer: Option B
10. Every material obeys the Hook’s law with in its

A. Elastic limit                          B. Plastic point
C. limit of proportionality           D. ultimate stress

Answer: Option A

11. The units of M.I. are


A. kg/m                            B. m4
C. m2                               D. m3

Answer: Option B


12. At the point of contra flexure in a beam

A. B.M. is zero                 B. B.M. change its sign
C. S.F. zero                     D. Both S.F and B.M change sign

Answer: Option B

13. In a double overhang beam carrying U.D.L through out its length the number of point of contra flexures are


A.1                                  B. 2
C. 0                                 D. 3
Answer: Option B

14. The max B.M in a S.S.B carrying a total U.D.L of W kN over the entire span ‘L’ is

A.WL/4                            B. WL/8
C.WL/3                           D. WL

Answer: Option B

15. The Max B.M In a cantilever of span ‘L’ carrying a total U.D.L of W is


A.WL2/2                          B. WL/2
C.WL/4                           D. WL

Answer: Option B

16. The max B.M In a S.S.B carrying two equal points ‘W’ each acting acting at middle third points is

A.WL/4                            B. WL/6
C. WL/3                          D. WL/8

Answer: Option C

17. The relation between S.F and Bending moment at a section is given by

A.F=dm/dx                      B. F=d2 M/dx2
C. F= Mdx                       D. F=d2 Y/dx2  EI

Answer: Option A

18. A beam is provided with supports not at free end called

A. continuous beam                            B. over haging beam
C. fixed beam                            D. freely supported beam

Answer: Option B

19. If a cantilever beam subjected to a point load at free end. The maximum shear force occurs at

A. fixed end                                        B. free end
C. throughout the total length             D. mid span

Answer: Option C

20. Where the B.M. changes is sign, there the S.F. is

A. Maximum                    B. Minimum
C. Zero                            D. None

Answer: Option D

21. Rate of change of shear force is equal to

A. Bending moment                   B. Intensity of loading
C. Maximum deflection              D. Slope

Answer: Option B

22. Rate of change of B.M. is equal to

A. Shear force                           B. Intensity of load
C. Slope                           D. Deflection

Answer: Option A

23. Change in bending moment between two section is given by

A. Area of the S.F.D                                     B. Area of the B.M.D
C. Area of the loading diagram             D. All the above

Answer: Option A

24. Change in S.F. between two sections given

A. Area of S.F.D                         B. Area of B.M.D
C. Area of loading diagram                  D. All the above

Answer: Option C
25. Slope of B.M.D. gives

A. Shear force                           B. Bending moment
C Intensity of loading       D. Deflection

Answer: Option A

26. A bending moment is defined as
A. Arithmetic sum of the moments of all the forces on either side of the section
B. Algebraic sum of the forces on either side of the section
C. Algebraic sum of the forces of all the forces on the either side of the
Section
D. Algebraic sum of the forces of all the forces on the either side of the section
     Answer: Option A

27. A simply supported beam of span L carries a concentrated load W at its mid –span. The max. bending moment m is

A.  WL/2                 B. WL/4
B.  WL/8                 D. WL/6

Answer: Option C

28. The shape of B.M diagram with U.D.L over a length of a beam is

A.   Linear                             B. Parabolic
C. Cubical                            D. Circular
       
Answer: Option B


29. For S.S. Beam with central load, the B.M is

A.   Least at center            B. Parabolic
C.Max. at center              D. Max.at support

    Answer: Option B

30. The ratio of width to depth of a strongest rectangular beams that can be cut out a cylindrical log of wood

A.1/2                    B. 1/
C. 1/3                   D. 2/3

Answer: Option B

31. A beam of uniform strength has at every section same

A.   Bending moment              B. Bending stress
C.Deflection                         D. Stiffness

Answer: Option B

32. The curvature of the beam is equal to

A.EI/M                  B. ME/I
C. M/EI                 D. MI/E

Answer: Option C

33. M/I= f/Y=E/R This equation is absolutely correct when B.M is varying

A.   Linear                             B. Parabola
C.Constant                           D. None

    Answer: Option B

34. Units for section- modulus of a beam is

A.mm2                   B. N/mm2
C. mm3                  D. mm4

        Answer: Option C

35. Section modulus of a beam is maximum at

A.   Where the M.I of a section is minimum
B.   Where the M.I of a section is maximum
C.   Where the ‘y’ is maximum
D.   None of the above

      Answer: Option B

36. At point of contra flexure

A.S.F. is zero                            B. B.M is zero
C. Both S.F & B.M is zero                   D. Slope is zero

Answer: Option C

37. Which one of the correct assumption of the theory of simple bending

A.   The value of “ youngs modulus is same in tension & compression
B.   Transverse section of a beam remains plane before of the bending
C.   The material of the beam is homogenous
D.   All of the above

Answer: Option D

38. Along the neutral axis of a simply supported beam

A.   Fibres do not undergo strain               B. Fibres undergo minimum strain
      C.Fibres undergo max. strain                           D.None of the above

        Answer: Option A

39. A reinforced concrete beam is assumed to be made of

A.   Homogenous material           B. Heterogeneous material
C.Isotropic material                  D. None of the above

Answer: Option B

40. The shear stress in a beam is zero

A.   At the centroid of the section                            
B.   On the extremetree surface fibres
C.   At the neutral axis but not at the centroid
D.   At the free edges

Answer: Option B

41. The shear stress on a beam section is maximum

A.   At the centroid of the section
B.   On the extreme free surface fibres
C.   At the neutral axis but not at the centroid
D.   At the free edges

   Answer: Option A

42. The maximum shear stress will always occur at

A.   Neutral axis
B.   The top extreme fiber
C.   The bottom extreme fiber
D.   A fiber in the cross section depending on the configuration

    Answer: Option B

43. The ratio of the maximum shear stress to the average shear stress of a rectangular section or rectangular

A.   2                                B. 1.5
C.1.75                             D. None

         Answer: Option B

44. The shear stress distribution across a rectangle beam section

A.   Linear              B. Cubic parabola
C.Parabolic            D. Hyperbolic

      Answer: Option C

45. The variation of the shear stress on a plane parallel to the neutral plane in a beam caused by a uniformly distributed load is

A. Linear                         B. parabolic
C.Non- Linear                           D. Linear or non- linear
      Answer: Option A

46. Along the principle plane subjected to maximum principle stress

A.   Max. shear stress acts               B. Min. shear stress acts
C.No shear stress acts                             D. None of these

       Answer: Option C

47. When a member of length ‘L’ subjected to a uniform BM ‘M’ the deflection at the centre when it is bent into a circular are will be

A.ML2/2EI             B. ML2/4EI
C.ML2/8EI             D. ML2/EI

Answer: Option C

48. A cantilever beam of length ‘L’ is subjected to a UDL of ‘w’ M, the maximum deflection will be

A.WL4/8EI             B. wL4/4EI
C.wL4/48EZ          D. 5/284 wL4/8EI

Answer: Option A

49. The differential equation for the deflected beam is

A.   EId2y/              B. Bending moment
C Intencity of loading       D. Deflection

        Answer: Option A

50. Rate of change of deflection is called

A.   Slope                              B. Shear force
C.Slope                                D. Deflection

Answer: Option A

  51. Rate of change of slope is called

A.   Intensity of load              B. Shear force
C. Deflection                        D. Shear force

Answer: Option B

52. Radius of curvature of the beam is equal to

A.M/EI                            B. WI2/2
C. EI/M                           D. M/Z

Answer: Option C

 53. A simply supported beam of span ‘I’ meters is carrying a u.d.l of wKN/meter run over the entre span. The slope at the left support is given by

A.wl2/16El             B. Bending moment
C Intencity of loading       D. Deflection

Answer: Option C

54. The max deflection of a S.S.B of length L with central load W is

A.WL2/48El                     B. W2 L/48El
C. WL3/48El                    D. w3L/48El

Answer: Option C

55. Max. deflection of a cantilever due to pure bending moments M at its free end is

A.ML2/3El                       B. ML2/4El
C. ML2/6El                      D. ML2/2El

Answer: Option D
56. The moment diagram for a cantilever whose free end is subjected to a B.M. will be

A.   Triangle                     B. Rectangle
C.Parasole                       D. Cubic Parasole

Answer: Option B

57. If a fixed beam is subjected to point load at mid span, total number of points of contraflexure are

A.   1                      B. 2
C.3                        D. Zero

Answer: Option B

58. In a fixed beam, if a support sink by   then the fixed end moment due to the sinking is equal to

A. Shear force                           B. Bending moment
C Intencity of loading       D. None

Answer: Option B
59. For the same loading, the maximum deflection for a fixed beam, when compared to the simply supported

A.   Equal               B. More
C.less                    D. None

Answer: Option C

60. A hollow shaft transmit – power than a solid shaft of same material and same weight
 A. Less                 B. Same
C. More                 D. None

Answer: Option C

61. The ratio of max shear stress developed in a solid shaft of dia ‘D’ and a hollow shaft of external dia ‘D’ and internal dia ‘d’ for the same Torque is given by

A. D2+d2/D2                            B. D2-d4 /D4
C.D 2-d2/D2                      D. D4-d4/d4

Answer: Option B

62. If shaft of diameter ‘d’ is subjected to a Torque “T” the max shear stress is

A.32T/πd3              B. 16T/ πd3
C. 16T/ πd2           D. 64T/ πd4

Answer: Option B

63. Torsional Rigidity is

A. The Torque that produces rotation of unit R.P.M in the shaft
        B. The torque that transmit unit H.P at one r.p.m.
        C. The torque which produces a twist of unit radian in unit length
        D. The torque which produces a unit twist in a unit dia

Answer: Option C

64. If a shaft subjected to torsion the max shear stress occur at

A. Center                                                               B. Outer most surface
C. Between the center and outer most fibre             D. 2/3 radius

Answer: Option B

65. Torsion equation is applicable for the cross section

A. Rectangular only                            B. Circular section only
C. All section                             D. Circular and tubular section only

Answer: Option D

66. Polar moment of Inertia is

A. M.I about Z axis of the member                
        B. M.I about ‘x’ axis of the member
        C. M.I about ‘y’ axis of the member
        D. M.I about x.y axis

Answer: Option A

67. A vessel is said to be thin walled, when

A.   The vessel is made of thin sheets
B.   The vessel wall thickness is less than 1 mm
C.   The vessel wall thickness is equal to or less than 1/20 of the internal diameter of the vessel
D.   The vessel wall thickness is equal to or less than 1/10 of the internal diameter of the above

Answer: Option C

68. The ratio of hoop stress to longitudinal stress for thin spherical shell is

A. 2                       B. 1/2
C. 0                       D. 1/4
         E. There is no such ratio for spherical shells

Answer: Option C

69. Hoop stress is

A.   Circumferential tensile stress
B.   Compressive stress
C.   Radial stress
D.   Longitudinal stress
E.   None of the a bove


Answer: Option A

70. In case of thin walled cylinders the ratio of hoop stress to longitudinal stress is

A. 2                       B. 1/4
C.4                        D. 1/2

Answer: Option A

71. If the cylinders  is subjected to internal pressure, then the hoop stress is in nature

A. Compressive                B. Tensile
C. Shear                          D. Bending

Answer: Option B

72. If the cylinder is subjected to external water pressure, then the hoop stress is in nature

A. Compressive                B. Tensile
C. Shear                          D. Bending

Answer: Option A

73. The maximum shear stress developed in a thin cylinder is equal to

A. pd/2t                B. pd/4t
C.pd/8t                 D. None

Answer: Option C

74. Euler’s theory not valid for mild steel structure. If the slenderness ratio

A. more than 80               B. Less than 80
C. More than 120             D. In between 80-120

Answer: Option B


75. Column will be having maximum bucking load, if its

A. Both ends are fixed               B. One end fixed and other end hinged
C. Both ends are hinged            D. One end fixed and the other end is free

Answer: Option A

76. Strut is a compression member used in

A.   Building frames                             B. Trusses
                             
B.   Cranes                                 D. Retaining walls


Answer: Option B

77. Short columns fail due to

A. Crushing           B. Bending
C. Tension             D. Buckling

Answer: Option A

78. The load at which the member just buckles is called

A. Buckling load              B. critical load
C. Crippling load              D. All of the above

Answer: Option D

79. Euler’s formula is applicable for
A. Long columns only                          B. Short columns only
C. Both long and short columns           D. None

Answer: Option C

80. When the slenderness ratio of the column is increased then the value of crippling load is
A. Low                   B. High
C. Zero                  D. None

Answer: Option A

81. The slenderness limit for using the Euler’s formula is

A. 12                     B. 24
C.50                      D. 80

Answer: Option D

82. Rankine’s load is equal to

A. P=(pc+pe /pc pe )                                B. P=(pcpe/pc+pe)
C. P=(pc+pe/pc-pe)                                D. P=(pc-pe/pc+pe)

Answer: Option B

83. The Rankine’s constant is given by

A. α =fc2E           B. α = fcE/π2
C. α =π2EI/l2         D.  α =π2E/l2

Answer: Option A
84. Rankine’s constant for the mild steel is

A. 1/9000              B. 1/1600
C. 1/7500              D. 1/750

Answer: Option C

85. Stanchion’s are used in

A. Trusses             B. Cranes
C. Buildings          D. None

Answer: Option C

86. The ratio between effective length of the and leas radius of gyration is called as

A. Section modulus                             B. Buckling point
C. Slenderness Ration               D. None of the above

Answer: Option C

87. The earth retained by retaining wall called

A. Surcharge                   B. Angle of repose
C. Back fill                      D. None

Answer: Option C

88. Co-efficient of active earth pressure is given by

A. 1-sinǿ/1+sin                B. 1+sin /1-sin
C. 1-sin  /1+sin               D. None

Answer: Option A

89. Co-efficient of passive earth pressure is given by

A.32T/πd3              B. 16T/ πd3
C. 16T/ πd2           D. 64T/ πd4

Answer: Option B

90. For cohesive soils, angle of internal friction is

A.300                     B. 450
C.900                     D. 00
                            
Answer: Option D

91. For sand, angle of internal friction is

A.300                     B. 450
C.900                     D. 00

Answer: Option A

92. The factor of safety for sliding is

A. 1.5                    B. 3
C. 4                       D. 2.5

Answer: Option A

93. The factor of safety for over turning is
A. 1.5                    B. 2
C. 2.5                    D. 3

Answer: Option B

94. The resistance of dam against sliding increases with increases of

A.   Depth of water
B.   Weight of the dam
C.   Weight of water on the dam
D.   Stabilizing moment

Answer: Option B

95. If no tension to occur at the base the resultant force on the dam should strike the base

A.   At the heel if the dam
B.   At the toe of the dam
C.   Beyond the base width of the dam
D.   With in the middle third of the base        

Answer: Option D

96. The dam fails by over turning if the resultant force strike the base at

A.   Middle if the base
B.   2/3 the base width
C.   Beyond the base
D.   A distance equal to top width from the face of the dam

Answer: Option C
97. Tension occurs at the base of the dam if the eccentricity is

A. e>b/6                B. e<b/6
C. e=-b/6              D. e=0

Answer: Option A

98. A diagram which represents the variation of axial load along the length of simply supported beam

A. Bending Moment diagram               B. Shear Force diagram
C. Thrust diagram                              D. Both A and B are correct

Answer: Option C

99. The practical unit of work is

A. Joule                 B. Erg
C. Newton             D. Dyne

Answer: Option A

100. Mechanical advantage is equal to

A. Load/effort                                               B. Input x output
C. Efficiency x velocity ratio                D. Efficiency / velocity ratio     

Answer: Option A















































































































1 comment:

  1. I have read a few good stuff here. Definitely worth bookmarking for revisiting. I wonder how much effort you put to make such a wonderful informative site.Alexandr Shcolyar


    ReplyDelete

Design of Cantilever retaining wall - Software

  Link -  Cantilever retaining wall design